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ABSTRACT 

Over the last couple of decades, there have been a large variety of 

approaches towards modeling student knowledge within 

intelligent tutoring systems. With the booming development of 

deep learning and large-scale artificial neural networks, there have 

been empirical successes in a number of machine learning and 

data mining applications, including student knowledge modeling. 

Deep Knowledge Tracing (DKT), a pioneer algorithm that utilizes 

recurrent neural networks to model student learning, reports 

substantial improvements in prediction performance. To help the 

EDM community better understand the promising techniques of 

deep learning, we examine DKT alongside two well-studied 

models for knowledge modeling, PFA and BKT.  In addition to 

sharing a primer on the internal computational structures of DKT, 

we also report on potential issues that arise from data formatting. 

We take steps to reproduce the experiments of Deep Knowledge 

Tracing by implementing a DKT algorithm using Google’s 

TensorFlow framework; we also reproduce similar results on new 

datasets. We determine that the DKT findings don't hold an 

overall edge when compared to the PFA model, when applied to 

properly prepared datasets that are limited to main (i.e. non- 

scaffolding) questions. More importantly, during the investigation 

of DKT, we not only discovered a data quality issue in a public 

available data set, but we also detected a vulnerability of DKT at 

how it handles multiple skill sequences.   

Keywords 

Knowledge tracing, deep learning, recurrent neural networks, 

student modeling, performance factors analysis, data quality  

1. INTRODUCTION 
Deep Learning (DL) is an emerging approach within the machine 

learning research community. A series of deep learning algorithms 

have been proposed in recent years to move machine learning 

systems toward the discovery of multiple levels of representation 

and they already had important empirical successes in a number of 

traditional AI applications such as computer vision and natural 

language processing [8]. Much more recently, Google’s deep 

learning networks [7] beat a top human player at the game of Go.  

Most research in deep learning (e.g. Google’s deep learning 

algorithm) has been focused on the studies of artificial neural 

networks.  

Deep knowledge tracing (DKT), the recent adoption of recurrent 

neural nets  (RNNs) in the area of educational data mining, 

achieved dramatic improvement over well-known Bayesian 

Knowledge Tracing models (BKT) and the results of it have been 

demonstrated to be able to discover the latent structure in skill 

concepts and can be used for curriculum optimization [1]. 

Driven by both noble goals (testing the reproducibility of 

scientific findings) and some selfish ones (how did they do so 

much better at predicting student performance?!), we set out to 

take the theories, algorithms, and code from the DKT paper and 

apply them ourselves to the same data and more data sets.  As to 

the goal of reproducing the findings, we were motivated by 

studies discussing the importance of reproducibility [5]. In 

addition to applying DKT to the same data, we also tested the 

algorithm on a different ASSISTments dataset (which covers data 

in 2014-2015 school year), as well as the one of data sets from 

KDD Cup 2010. In our experiments with the original DKT 

algorithm, we uncovered three aspects of the ASSISTments 2009-

2010 data set that, when accounted for, drastically reduce the 

effectiveness of the DKT algorithm. These can broadly be 

summarized as 1). an error in reporting the data (wherein rows of 

data were randomly duplicated). 2). an inconsistency of skill 

tagging, and 3). the use of information ignored by PFA and BKT. 

We will discuss these three inconsistencies and their impacts on 

the prediction accuracies in section 3.  

2. DEEP KNOWLEDGE TRACING AND 

OTHER STUDENT MODELING 

TECHNIQUES 
When describing neural networks, the use of 'deep' conventionally 

refers to the use of multiple processing layers; the 'Deep' in DKT 

refers to the recurrent structure of the network and the 'depth' of 

information over time. This family of neural nets represents latent 

knowledge state, along with its temporal dynamics, using large 

vectors of artificial neurons, and allows the latent variable 

representation of student knowledge to be learned from data rather 

than hard-coded.  

Typical RNNs suffer from the now famous problems of vanishing 

and exploding gradients, which are inherent to deep networks. 

Figure 1 shows an unrolled RNN; there are loops at hidden layers, 

allowing information to be retained; this is the ‘depth’ of an RNN. 

When building a deep neural net, the standard activation functions 

, and cumulative backpropagation error signals either shrink 

rapidly or grow out of bounds. i.e., they either decay or grow 

exponentially (‘vanish’ or ‘explode’).  Long short-term memory 

(LSTM) model [14] is introduced to deal with the vanishing 

gradient problem; it also achieves remarkable results on many 

previously un-learnable tasks. LSTM, a variation of recurrent 

neural networks, contains LSTM units in addition to regular RNN 

units. LSTM units have two unique gates: forget and input gates 
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to determine when to forget previous information, and which 

current information is important to remember. 

 

Figure 1. An unrolled Recurrent Neural Network (RNN)  

The idea behind LSTM is simple. Some of the units are called 

constant error carousels (CEC). Each CEC uses an activation 

function f, the identity function, and has a connection to itself 

with fixed weight of 1.0. Due to f’s constant derivative of 1.0, 

errors backpropagated through a CEC cannot vanish or explode 

but stay the same magnitude. CECs are connected to several 

nonlinear adaptive units needed for learning nonlinear behavior. 

Weight changes of these units often profit from error signals, 

which propagate far back in time through CECs. CECs are the 

main reason why LSTM nets can learn to discover the importance 

of (memorize) events that happened thousands of discrete time 

steps ago while previous RNNs routinely fail in cases of minimal 

time lags of 10 steps. LSTM learns to solve many previously un-

learnable DL tasks and clearly outperformed previous RNNs on 

tasks both in terms of reliability and speed [1].  

In the DKT algorithm, at any time step, the input to RNNs is the 

student performance on a single problem of the skill that the 

student is currently working on. Since RNNs only accept fixed 

length of vectors as the input, we used one-hot encoding to 

convert student performance into fixed length of vectors whose all 

elements are 0s except for a single 1. The single 1 in the vector 

indicates two things: which skill was answered and if the skill was 

answered correctly. This data presentation draws a clear 

distinction between DKT and other student modeling methods, 

such as Bayesian Knowledge Tracing and Performance Factor 

Analysis. 

The Bayesian Knowledge Tracing (BKT) model [10] is a 2-state 

dynamic Bayesian network where student performance is the 

observed variable and student knowledge is the latent data. The 

model takes student performances and uses them to estimate the 

student level of knowledge on a given skill. The standard BKT 

model is defined by four parameters: initial knowledge and 

learning rate (learning parameters) and slip and guess (mediating 

parameters).  The two learning parameters can be considered as 

the likelihood the student knows the skill before he even starts on 

an assignment (initial knowledge, K0) and the probability a 

student will acquire a skill as a result of an opportunity to practice 

it (learning rate). The guess parameter represents the fact that a 

student may sometimes generate a correct response in spite of not 

knowing the correct skill. The slip parameter acknowledges that 

even students who understand a skill can make an occasional 

mistake. Guess and slip can be considered analogous to false 

positive and false negative. BKT typically uses the Expectation 

Maximization algorithm to estimate these four parameters from 

training data. Based on the estimated knowledge, student 

performance at a particular practice opportunity can be calculated 

except the very first one, which only apples the value of K0. 

Skills vary in difficulties and amount of practices needed to 

master, so values for four BKT parameters are skill dependent. 

This lead to one major weakness of BKT [11]: it lacks the ability 

to handle multi-skill questions since it works by looking at the 

historical observation of a skill and cannot accommodate all skills 

simultaneously. One simple workaround is treating the multiple 

skill combination as a new joint skill and estimate a set of 

parameters for this new skill. Another common solution to this 

issue is to associate the performance on multiple skill questions 

with all required skills, by listing the performance sequence 

repeatedly [12]. This makes the model see this piece of evidence 

multiple times for each one of required skills. As a result, a 

multiple skill question is multiple single skill questions.  

Another popular student modeling approach is the Performance 

Factors Analysis Model (PFA) [9]. PFA is a variant of learning 

decomposition, based on a reconfiguration of Learning Factor 

Analysis. Unlike, BKT, it has the ability to handle multiple skill 

questions. Briefly speaking, it uses the form of the standard 

logistic regression model with the student performance as the 

dependent variable. It reconfigures LFA (Learning factors 

analysis) [13] on its independent variables, by dropping the 

student variable and replaces the skill variable with question 

identity. This model estimates parameters for each item’s 

difficulty and also two parameters for each skill reflecting the 

effects of the prior correct and incorrect responses achieved for 

that skill. Previous work that compares KT and PFA have shown 

that PFA to be the superior one [11]. One reason is the richer 

feature set that PFA can utilize and the fact that learning 

decomposition models are ensured to reach global maxima while 

the typical fitting approach of BKT is no guarantee of finding a 

global, rather than a local maximum. 

Beside the theoretical comparison of DKT, BKT, and PFA, we 

can also compare them visually by looking at the differences 

between them in terms of inputs data. Consider a simple scenario 

that a student answers two questions from two skills each, Tables 

1-3 compare different training data formats for these three 

modeling methods under that same scenario of student responses.  

Table 1. An example of BKT’s training data 

Model ID Skill ID Response Sequence 

1 A 1,0 

2 B 0,1 

  

Table 2. An example of PFA’s training data 

Index 

ID 

Skill 

ID 

Prior 

Correct 

Prior 

Incorrect 

Difficulty Correct 

1 A 0 0 0.7 1 

2 A 1 0 0.75 0 

3 B 0 0 0.6 0 

4 B 0 1 0.65 1 
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Table 3. An example of DKT’s training data 

Index ID One-hot encoding 

1 1,0,0,0 

2 0,0,1,0 

3 0,0,0,1 

4 0,1,0,0 

 

3. METHODOLOGY AND DATA SETS 

3.1 Implementation of Deep Knowledge 

Tracing in Tensorflow 
The original version of DKT (Lua DKT1) was implemented in Lua 

scripting language using Torch framework and its source code has 

been released to the public. In order to have a comprehensive 

understanding of the DKT model, we decided to replicate and 

implement DKT model in Python and utilize Google’s 

TensorFlow API [3] to help us with building neural networks. 

TensorFlow is Google Brain’s second generation machine 

learning interface; it is flexible and can be used to express a wide 

variety of algorithms.  

Our implementation of DKT in TensorFlow (TensorFlow DKT2) 

can be described as a directed graph, which is composed of a set 

of nodes. The graph represents a data flow computation, with 

extensions for allowing certain nodes to maintain and update 

persistent state and for branching and looking control, this is 

crucial for allowing RNN nodes to work on sequential data. In the 

directed graph, each node has zero or more inputs and zero or 

more outputs and represents the instantiation of an operation. An 

operation represents an abstract computation. In our 

implementation of DKT model, we adapted the loss function of 

the original DKT algorithm. It has 200 fully-connected hidden 

nodes in the hidden layer. To speed up the training process, we 

used mini-batch stochastic gradient descent to minimize the loss 

function. The batch size for our implementation is 100. For one 

batch, we randomly select data from 100 students in our training 

data. After the batch finishes training, 100 students in the batch 

are removed from the training data. We continue to train the 

model on next batch until all batches are done. Just as in the 

original Lua implementation, Dropout [4] was also applied to the 

hidden layer to avoid over-fitting.  

4. DATA SETS 

4.1 ASSISTments 2009-2010 Data Set 
The original DKT paper conducted one of three of experiments 

using the ASSISTments 2009-2010 skill builder data set [16]. 

This data set was gathered from ASSISTments’ skill builder 

problem sets, in which a student achieves mastery by working on 

similar (often isomorphic) questions until they can correctly 

answer n right in a row (where n is usually 3).  After mastery, 

students do not commonly rework the same skill. This dataset 

contains 525,535 rows of student responses; there are 4,217 

student ID's and 124 skills. Lua DKT achieved an AUC of 0.86 

                                                                 

1 https://github.com/chrispiech/DeepKnowledgeTracing 

2 https://github.com/siyuanzhao/2016-EDM 

and noticeably outperformed BKT (AUC = 0.67) on this data set. 

However, during our investigation on the DKT source code and 

application, we believe we discovered three issues that have 

unintentionally inflated the performance of Lua DKT. These 

issues are: 

4.1.1 Duplicated records   
To our surprise and dismay, we found that the ASSISTments 

2009-2010 data set has a serious issue of quality: large chunks of 

records are duplications that should not be there for any reason 

(e.g. see records of order id 36369610). These duplicated rows 

have the same information but only differ on the “opportunity” 

and “opportunity_original”; these two features record the number 

of opportunities a student has practiced on a skill and the number 

of practices on main problems of a skill respectively. It is 

impossible to have more than one ‘opportunity’ count for a single 

order id. This is definitely an error in the data set and these 

duplicated records should not be used in any analysis or modeling 

studies. We counted there are 123,778 rows of duplications out of 

525,535 in the data set (23.6%). The existence of duplicated data 

is an avoidable oversight and ASSISTments team has 

acknowledged this error on their website. All new experiments in 

this work and following discussions exclude data of these 

duplications. 

4.1.2 Mixing main problems with scaffolding 

problems 
A mastery learning problem set normally contains over a hundred 

of main problems, and each main problem may have multiple 

associated scaffolding problems. Scaffolding problems were 

designed to help students acquire an integrated set of skills 

through processes of observations and guided practice; they are 

usually tagged with different skills and have different designs 

from the main problems. Because of the difference in usage, 

scaffolding questions should not be treated as the same as main 

problems. Student modeling methods such as BKT and PFA 

exclude scaffolding features. The experiment conducted by Lua 

DKT did not filter out scaffolding problems.  This means that Lua 

DKT had the advantage of additional information; thus, the 

prediction results cannot be compared fairly with BKT. There are 

73,466 rows of records of scaffolding problems. 

4.1.3 Repeated response sequences with different 

skill tagging (Duplication by skill tag) 
The 2009-2010 skill builder dataset was created as a subset of the 

2009-2010 full dataset.  The full dataset from 2009-2010 includes 

student work from both skill builder assignments (where a student 

works until a mastery threshold is reached) and more traditional 

assignments (where a student has a fixed number of problems).  

Any problem (or assignment) can be tagged with any number of 

skill tags. Typically, problems have just one skill tag; they seldom 

are tagged with two skills; they are very rarely tagged with three 

or more. Depending on the design of the content creator, a 

problem set may have multiple skill tags; many assignments - 

especially skill builders - will have the same skill tag for all 

problems. When the full dataset was decomposed into only 

mastery style assignments, the problems, and assignments that 

were tagged with multiple skills were included with a single tag, 

but repeated for each skill.  This means that the sequence of action 

logs from one student working on one assignment was now 

repeated once per skill.  For models such as RNNs that operate 

over sequences of vectors and memory on the entire history of 
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previous inputs, the issue of duplicated sequences is going to add 

additional weight onto the duplicated information; this will have 

undesired effects on RNN models.  

For an example, suppose we have a hypothetical scenario that a 

student answers two problems which have been tagged with skill 

“A” and “B”; he answers first one correctly and the next one 

incorrectly. Table 4 shows the data set where responses have been 

repeated on skill “A” and “B”. This format of data can be used in 

BKT models since BKT can build two models for skill “A” and 

“B” separately.  When applying this sequential data set to DKT, 

we believe DKT can recognize the pattern when a problem tagged 

with skill “B” follows a problem tagged with “A”; the skill “B” 

problem has an extremely high chance to repeat skill “A” 

problem’s response correctness. Note that skill ID can be mapped 

to skill names, but the order of skill ID is completely arbitrary.  

  

Table 4. An example of repeated multiple-skill sequence  

Index ID Skill ID Problem ID Correctness 

1 A 3 1 

1 B 3 1 

2 A 4 0 

2 B 4 0 

 

One approach to change the way of how multiple-skill problems 

are handled is to simply use the combination of skills as a new 

joint skill. Table 5 shows the data set which uses a joint skill of A 

and B. In this case, DKT no longer has access to repeated 

information. PFA and BKT can also adapt this format of data too.  

 

Table 5. An example of joint skills on multiple-skill problems 

Index ID Skill ID Problem ID Correctness 

1 A, B 3 1 

2 A, B 4 0 

 

Table 6. Three variants of ASSISTments 2009-2010 Data set 

 09-10 (a) 09-10 (b) 09-10 (c) 

Has 

duplicated 

records 

 

No 

 

No 

 

No 

Has 

scaffolding 

problems 

 

Yes 

 

No 

 

No 

Repeated 

multiple-skill 

sequences 

 

Yes 

 

Yes 

 

No 

Joint skills 

from 

multiple-skill 

 

No 

 

No 

 

Yes 

 

In order to understand the impact of having scaffolding problems 

and two approaches to dealing with multiple-skill problems, we 

generate three different data sets (namely 09-10 (a), 09-10 (b), 09-

10 (c)) derivate from the ASSISTments 2009-1010 data set, as 

summarized in Table 6. 

4.2 ASSISTments 2014-2015 Data Set 
Even without the issue of duplicate rows, 2009-2010 skill builder 

set has lost its timeliness and certainly cannot represent the latest 

student data in an intelligent tutoring system. So we gathered 

another data set that covers 2014-2015 school years’ student 

response records [16]. In this experiment, we randomly selected 

100 skills from this year’s data records. This data set contains 

707,944 rows of records; each record represents a response to a 

main problem in a mastery learning problem set. Each problem set 

has only one associated skill and we take caution to make sure 

there is no duplicated row in this data set. We suspect this new 

data set contains different information that covers student learning 

patterns, item difficulties and skill dependencies. 

4.3 KDD Cup 2010 Data Set 
Our last data set comes from the Cognitive Algebra Tutor 2005-

2006 Algebra system [6]. This data was provided as a 

development dataset in the KDD Cup 2010 competition. Although 

both ASSISTments and Cognitive Algebra Tutor involve using 

mathematics skills to solve problems, they are actually rather 

different from each other. ASSISTments serves primarily as 

computer-assisted practice for students’ nightly homework and 

review lessons while the Cognitive Tutor is part of an integrated 

curriculum and has more support for learners during the problem-

solving process. Another difference in terms of content structure 

is that the Cognitive Tutor presents a problem to a student that 

consists of questions (also called steps) of many skills. The 

Cognitive Tutor uses Knowledge Tracing to determine when a 

student has mastered a skill. A problem in the tutor can consist of 

questions of different skills, once a student has mastered a skill, as 

determined by KT, the student no longer needs to answer 

questions of that skill within a problem but must answer the other 

questions which are associated with the un-mastered skills. The 

number of skills in this dataset is substantially larger than the 

ASSISTments dataset [15]. One issue of using KDD data on PFA 

is how to estimate item difficulty feature. In this work, we use a 

concatenation of problem name and step name. However many 

such pairs are only attempted by 1 student and the difficulty 

values of these items are either 1.0 or 0.0, leading to both over-

fitting and data leakage. To fix that, we replace difficulty values of 

these items with skills’ difficulty information. Filtering out rows 

with missing values resulting in 607,026 rows of data with 

students responded correctly at 75.5% of the time. This KDD data 

set has 574 students worked on 436 skills in mathematics. The 

complete statistic information of five data sets can be found in 

Table 7. 

 

Table 7. Data set statistics 

 # records # Students # Skills 

09-10 (a) 401,757 4,217 124 

09-10 (b) 328,292 4,217 124 

09-10 (c) 275,459 4,217 146 

14-15 707,944 19,457 100 

KDD 607,026 574 436 
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5. RESULTS 
Student performance predictions made by each model are 

tabulated and the accuracy was evaluated in terms of Area Under 

Curve (AUC) and the square of Pearson correlation (r2). AUC and 

r2 provide robust metrics for evaluation predictions where the 

value being predicted is either a 0 or 1 also represents different 

information on modeling performance. An AUC of 0.50 always 

represents the scored achievable by random chance. A higher 

AUC score represents higher accuracy. r2 is the square of Pearson 

correlation coefficient between the observed and predicted values 

of dependent variable. In the case of r2, it is normalized relative to 

the variance in the data set and it is not directly a measure of how 

good the modeled values are, but rather a way of measuring the 

proportion of variance we can explain using one or more 

variables. r2 is similar to root mean squared error (RMSE) but is 

more interpretable. For example, it is unclear whether an RMSE 

of 0.3 is good or bad without knowing more about the data set. 

However, an r2 of 0.8 indicates the model accounts for most of 

the variability in the data set. Neither AUC nor r2 method is a 

perfect evaluation metric, but, when combined, they account for 

different aspects of a model and provide us a basis for evaluating 

our models. 

Experiments on every data set have been 5-fold student level 

cross-validated and all parameters are learned from training data. 

We used EM to train BKT and the limit of iteration was set to 

200. Besides the number of hidden nodes and the size of mini-

batch parameters we have discussed, we set the number of epochs 

of DKT to 100. 

The cross-validated model predictions results are shown in Table 

8 and Table 9. As can be seen, DKT clearly outperforms BKT on 

all data sets, but the results are no longer overwhelmingly in favor 

of DKT (both implementations). Note that Lua DKT 

implementation which we can access uses regular RNN nodes; 

TensorFlow DKT uses LSTM nodes.  

Table 8. AUC results  

 Torch 

DKT 

TensorFlow 

DKT 

PFA BKT 

09-10 (a) 0.79 0.81 0.70 0.60 

09-10 (b) 0.79 0.82 0.73 0.63 

09-10 (c) 0.73 0.75 0.73 0.63 

14-15 0.70 0.70 0.69 0.64 

KDD 0.79 0.79 0.71 0.62 

 

Table 9. r2 results 

 Lua DKT TensorFlow 

DKT 

PFA BKT 

09-10 (a) 0.22 0.29 0.11 0.04 

09-10 (b) 0.22 0.31 0.14 0.07 

09-10 (c) 0.14 0.18 0.14 0.07 

14-15 0.10 0.10 0.09 0.06 

KDD 0.21 0.21 0.10 0.05 

 

On the ASSISTments data sets, average DKT prediction 

performance across two implementations is better than PFA and it 

is not affected by removing scaffolding, as we change dataset 

from 09-10 (a) to 09-10 (b).  On the other hand, PFA’s 

performance increases from 0.70 to 073 in AUC and 0.11 to 0.14 

in r2 (p ≤ 0.05), we believe that removing scaffolding helps 

reducing noise from data and provides PFA with a dataset with 

lower variance. When we switch to dataset 09-10 (c) where 

multiple skills were combined into joint skills, the performance of 

DKT suffers a noticeable hit, average AUC and average r2 drop 

from 0.81 to 0.74 and from 0.30 to 0.18 respectively. This 

observation confirms our suspicion on repeated response 

sequence inflating the performance of DKT models. On the 09-10 

(c) dataset and 14-15 dataset where no repeated response 

sequences and scaffolding problems, we notice that PFA performs 

as well as DKT. 

A deeper way of looking at the impact of repeated response 

sequences on data set 09-10 (b) is splitting the prediction results 

into two, the predictions of leading records and repeated data 

points. We see that predictions on repeated data points (e.g. skill 

“B” problems in Table 4) have nearly perfect performance metrics 

(AUC = 0.97, r2 = 0.74). On the other hand, the leading records 

(e.g. skill “A” problems in Table 4) have much lower prediction 

results (AUC = 0.77, r2 = 0.23). That said, we also notice these 

numbers are still higher than 09-10 (c)’s results, which uses joint 

skill tags to avoid repeated sequences. One can explain this as 

making DKT to model skills individually can cause data 

duplications but it also can have benefits on building skill 

dependencies over time and use such information to make better 

predictions. 

On the KDD dataset, the performance results of two DKT 

implementations are definitely better than both BKT and PFA (p 

≤ 0.05). There are a few possible reasons for this performance gap 

between PFA and DKT. First of all, as we have mentioned, we 

have to adjust item difficulty values for many problems in order to 

avoid overfitting and data leakage, which leads to the lower 

predictive power of that feature and lower PFA performance. 

Another possible explanation of DKT is winning on KDD data set 

is that DKT can better exploit step responses. The structure of 

KDD data set made it is difficult to distinguish “main problems” 

and “scaffolding problems”, thus PFA is unable to have a more 

unified data set for this part of the experiment. That said, the 

advantage of DKT shows its power on complicated and realistic 

data sets. 

6. DISCUSSION AND CONTRIBUTION 
Within this paper, we have compared two well-studied knowledge 

modeling methods with the emerging Deep Knowledge Tracing 

algorithm. We have compared these models in terms of their 

power of predicting student performance in 5 different data sets. 

Contrary to our expectation, the DKT algorithm did not achieve 

overwhelmingly better performance when compared to PFA 

model on ASSISTments data sets when they are properly 

prepared. DKT appears to perform much better on KDD dataset, 

but we believe this is due to PFA model undermined by inaccurate 

item difficulty estimation. 

A second interesting finding is that when DKT is fed repeated 

response sequences derived from the transformation of problems 

tagged with multiple skills, the overall performance of DKT is 

certainly better than PFA and BKT. Our explanation is that 

DKT’s implementation backbone, RNNs, has the power of 
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remembering exact patterns of sequential data and could thus 

inflate prediction performance on responses tagged with multiple 

skills and repeated per skill. More discussion and special attention 

are required when handling multiple skill problems in DKT 

algorithm. 

Last, but not least, during the investigation of DKT, we 

discovered an issue in data quality arising from duplicated 

information in a publicly available data set.  The duplication 

issues (caused by unclear transformational rules and some other 

as-of-yet-to-be-ascertained cause) allowed us a natural experiment 

to examine the impact of duplications on the robustness of these 

algorithms.  These discoveries (the data duplications and their 

subsequent impact) should serve as a reminder of the importance 

of data preprocessing and transformation procedures in the work 

of knowledge discovery and data mining.  Or, put another way, 

while we advance new algorithms and fine tune their parameters, 

we should also consider (and, if possible, report on) the 

robustness of the algorithms to common data glitches.  

7. FUTURE WORK AND CONCLUSION 
There are several directions for further research in the area of 

DKT modeling. Prior work [2] has shown that the use of context-

dependent RNN language model improved the performance in the 

task of the Wall Street Journal speech recognition task.  More 

features like student features (e.g. prior knowledge, completion 

rates, time on learning, etc.), and content features (problem 

difficulty, skill hierarchies, etc.) may be available and could be 

used. A context-dependent DKT implementation could be created 

by adding an extra input vector containing these features. 

Another open area for future work is that DKT and other deep 

learning algorithms are not restricted to one kind of output or 

application. It is also possible that we could apply deep learning 

algorithms on other modeling challenges such as wheel spinning, 

mastery speed, and affect detection.   

In conclusion, our work here focuses on a primitive investigation 

of DKT and aims to provide us deeper insight on how DKT 

works. Overall, this paper suggests that DKT remains a promising 

approach to modeling student knowledge; however, we see that 

data which contains problems tagged with multiple skills has to be 

dealt carefully in DKT modeling. But, considering that this 

implementation of DKT: a) only relied on the sequences of 

student responses (just as BKT does) and no other information on 

skills and problems and b) performs substantially better than BKT 

and as good as PFA, we believe that DKT has great potential to 

outperform other methods when it utilizes more features. 
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